A new adaptive fuzzy-hybrid control strategy of semi-active suspension with magneto-rheological damper

نویسندگان

  • Pipit Wahyu Nugroho
  • H Du
  • W H. Li
  • G Alici
  • P. W. Nugroho
  • W. H. Li
چکیده

This paper presents the design and analysis of a new adaptive fuzzy (AF) logic and hybrid (skyhook plus groundhook) control technique applied to a semi-active suspension system of a quarter car mode. The hybrid control is applied because of its very good performance in ride comfort and road handling. Meanwhile, Fuzzy adaptive system is suitable for analysis of stability with non-linear performances. The adaptive fuzzy algorithm is used to approximate the estimated mass of the variable damping in the Hybrid loop. This model is adopting a Takagi-Sugeno configuration with a back propagation learning method typically used in a neural network configuration, which uses a product inference engine, singleton fuzzifier, centre average defuzzifier, and Gaussian membership function. Numerical simulations were conducted based on Simulink/Matlab using Fuzzy Logic Toolbox. It is found that the semi-active suspension system with the proposed adaptive fuzzyhybrid yields superior performance compared to both the Hybrid and the Passive counterparts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatization Intelligent Control of Vehicle Magneto-Rheological Semi-Active Suspension

In order to address the problem that traditional passive suspension damping parameter cannot be adjusted which makes it difficult to improve vehicle ride comfort and handling stability, the paper proposes use of controllable magneto-rheological dampers in replace of passive dampers to establish semi-active suspension based on magneto-rheological dampers. By designing magneto-rheological damper ...

متن کامل

Computer Simulation on Fuzzy Control of Semi-active Suspension System Based on the Whole Vehicle

With the development of technology, new materials have been invented, which have been applied to improve the performance of structures. Recently, researchers pay their attention to controllable fluids and its applications. Magneto rheological (MR) damper is a kind of devices that uses rheological fluids to modify their mechanical properties. Their mechanical simplicity, large dynamic range, low...

متن کامل

Development of a Semi-active Car Suspension Control System Using Magneto-rheological Damper Model

In this paper, the development of a semiactive suspension control of quarter car model using fuzzy-based controller has been done. The quarter car model to be used here can be described as a nonlinear two degrees of freedom system which is subject to excitation from different road profile. The semi-active control is designed as the fuzzy control inferred by using two single input rule fuzzy mod...

متن کامل

Development of Fuzzy Logic Controller by Particle Swarm Optimization Algorithm for Semi-active Suspension System using Magneto-rheological Damper MAT HUSSIN AB TALIB and INTAN Z. MAT DARUS

-The performance of fuzzy logic (FLC) and PID controllers optimized by particle swarm optimization (PSO) for semi-active suspension system using magneto-rheological (MR) damper are investigated. MR damper is an intelligent damper filled with particle magnetic polarizable and suspended into a liquid form. The Bouc-Wen model of MR damper is used to determine the required damping force based on fo...

متن کامل

Fuzzy Control of Seat Vibrations for Semi-Active Quarter Vehicle System Utilizing Magneto rheological Damper

–This paper presents an investigation into the effectiveness of controllable magnetorheological (MR) damper for a semi-acive vehicle model with passenger seat. Mathematical model has been experimentally developed for controller design using Choi et al. model. A quarter vehicle model has been employed for system performance evaluation via Matlab through numerical simulation. System behaviour rel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017